Abstract

The Multi-Level Fast Multipole Algorithm (MLFMA), a variant of the fast multiple method (FMM) for problems with oscillatory potentials, significantly accelerates the solution of problems based on wave physics, such as those in electromagnetics and acoustics. Existing shared memory parallel approaches for MLFMA have adopted the bulk synchronous parallel (BSP) model. While the BSP approach has served well so far, it is prone to significant thread synchronization overheads, but more importantly fails to leverage the communication/computation overlap opportunities due to complicated data dependencies in MLFMA. In this paper, we develop a task parallel MLFMA implementation for shared memory architectures, and discuss optimizations to improve its performance. We then evaluate the new task parallel MLFMA implementation against a BSP implementation for a number of geometries. Our findings suggest that task parallelism is generally superior to the BSP model, and considering its potential advantages over the BSP model in a hybrid parallel setting, we see it to be a promising approach in addressing the scalability issues of MLFMA in large scale computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.