Abstract

Chloroquine resistance is nowadays a great problem in malaria. Aurone derivatives were effective against chloroquine resistant parasite. Validated density functional theory (DFT)-based chemometric modeling, hologram QSAR (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity analysis (CoMSIA) studies were conducted on 35 aurone derivatives having antimalarial activity. 2D-QSAR models were developed on the training sets by Y-based ranking method. This model was validated on 50 pairs of the test and the training sets by k-Means cluster analysis method. HQSAR, CoMFA, and CoMSIA models were validated by standard techniques and each method validates the DFT-based 2D-QSAR study and in turn validates the earlier observed structural activity relationship data as well as each other. DFT-based 2D-QSAR model suggests that the increase of Mulliken charge at C14 and HOMO density located on C11 may be conducive to antimalarial activity. Ethyl group attached to C14 and the increase of the value of chemical potential may be beneficial for antimalarial activity. Methoxy fragment is important for better antimalarial activity by HQSAR study. CoMFA analysis shows a favorable steric green region is located near C14 whereas the unfavorable yellow region is far away from C14. A large blue region located near C14 indicates the positively charged groups are favorable at this position. CoMSIA steric features correlates well with the CoMFA steric features. CoMSIA study suggests the bulky hydrophobic substitution at C14 is necessary for antimalarial activity. These results may be utilized to obtain potential antimalarial molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call