Abstract

Brain structural and functional alterations have been reported in obsessive-compulsive disorder (OCD) patients; however, these findings were inconsistent across studies due to several limitations, including small sample sizes, different inclusion/exclusion criteria, varied demographic characteristics and symptom dimensions, comorbidity, and medication status. Prominent and replicable neuroimaging biomarkers remain to be discovered. This study explored the gray matter structure, neural activity, and white matter microstructure differences in 40 drug-naïve OCD patients and 57 matched healthy controls using ultrahigh field 7.0T multimodal magnetic resonance imaging, which increased the spatial resolution and detection power. We also evaluated correlations among different modalities, imaging features and clinical symptoms. Drug-naïve OCD patients exhibited significantly increased gray matter volume in the frontal cortex, especially in the orbitofrontal cortex, as well as volumetric reduction in the temporal lobe, occipital lobe and cerebellum. Increased neural activities were observed in the cingulate gyri and precuneus. Increased temporal-middle cingulate and posterior cingulate-precuneus functional connectivities and decreased frontal-middle cingulate connectivity were further detected. Decreased fractional anisotropy values were found in the cingulum-hippocampus gyrus and inferior fronto-occipital fascicle in OCD patients. Moreover, significantly altered imaging features were related to OCD symptom severity. Altered functional and structural neural connectivity might influence compulsive and obsessive features, respectively. Altered structure and function of the classical cortico-striato-thalamo-cortical circuit, limbic system, default mode network, visual, language and sensorimotor networks play important roles in the neurophysiology of OCD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.