Abstract

ABSTRACTCarbon nanotube arrays were grown in the presence of an applied mechanical stress (30 min, 60 mN/mm2 mechanical pressure) and dispersed in aqueous solution (0.08 - 2.3 mm2/mL). Optical (450-950 nm) transmission and right angle scattering measurements were performed on these dispersions and on an analogous set of conventional (non-stressed) carbon nanotubes. Results show similar transmission behavior and different right angle scattering dependence on concentration for stress-grown and conventional carbon nanotubes. This investigation provides the first evidence of differentiation between stress-grown and conventional carbon nanotubes in the optical regime, suggesting a point of departure for future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.