Abstract

Blockchain technology has attracted the interest of the global construction industry for its potential to enhance the transparency, traceability, and immutability of construction data and enables collaboration and trust throughout the supply chain. However, such potential cannot be achieved without blockchain “oracles” needed to bridge the on-chain (i.e., blockchain system) and off-chain (i.e., real-life physical project) worlds. This study presents an innovative solution that exploits smart construction objects (SCOs). It develops a SCOs-enabled blockchain oracles (SCOs-BOs) framework. To instantiate this framework, the system architecture of a blockchain-enabled construction supply chain management (BCSCM) system is developed and validated using a case study, whereby four primary smart contracts are examined in the context of off-site logistics and on-site assembly services. The validation results show that accurate data is retrieved against malicious data in each request, and the corresponding reputation scores are successfully recorded. The innovativeness of the research lies in two aspects. In addition to mobilizing SCOs as blockchain oracles to bridge the on-chain and off-chain worlds, it develops a decentralized SCO network to avoid the single point of failure (SPoF) problem widely existing in blockchain systems. This study contributes to existing research and practice to harness the power of blockchain in construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call