Abstract

Detection and characterization of protein-protein interactions are essential for many cellular processes, such as cell growth, tissue repair, drug delivery, and other physiological functions. In our research, we have utilized emerging solid-state nanopore sensing technology, which is highly sensitive to better understand heparin and fibroblast growth factor 1 (FGF-1) protein interactions at a single-molecule level without any modifications. Understanding the structure and behavior of heparin-FGF-1 complexes at the single-molecule level is very important. An abnormality in their formation can lead to life-threatening conditions like tumor growth, fibrosis, and neurological disorders. Using a controlled dielectric breakdown pore fabrication approach, we have characterized individual heparin and FGF-1 (one of the 22 known FGFs in humans) proteins through the fabrication of 17 ± 1 nm nanopores. Compared to heparin, the positively charged heparin-binding domains of some FGF-1 proteins translocationally react with the pore walls, giving rise to a distinguishable second peak with higher current blockade. Additionally, we have confirmed that the dynamic FGF-1 is stabilized upon binding with heparin-FGF-1 at the single-molecule level. The larger current blockades from the complexes relative to individual heparin and the FGF-1 recorded during the translocation ensure the binding of heparin-FGF-1 proteins, forming binding complexes with higher excluded volumes. Taken together, we demonstrate that solid-state nanopores can be employed to investigate the properties of individual proteins and their complex interactions, potentially paving the way for innovative medical therapies and advancements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.