Abstract
The semi-inclusive cross-section of two-nucleon emission induced by neutrinos and antineutrinos is computed by employing the relativistic mean field model of nuclear matter and the dynamics of meson-exchange currents. Within this model, we explore a factorization approximation based on the product of an integrated two-hole spectral function and a two-nucleon cross-section averaged over hole pairs. We demonstrate that the integrated spectral function of the uncorrelated Fermi gas can be analytically computed, and we derive a simple, fully relativistic formula for this function, showcasing its dependency solely on both missing momentum and missing energy. A prescription for the average momenta of the two holes in the factorized two-nucleon cross-section is provided, assuming that these momenta are perpendicular to the missing momentum in the center-of-mass system. The validity of the factorized approach is assessed by comparing it with the unfactorized calculation. Our investigation includes the study of the semi-inclusive cross-section integrated over the energy of one of the emitted nucleons and the cross-section integrated over the emission angles of the two nucleons and the outgoing muon kinematics. A comparison is made with the pure phase-space model and other models from the literature. The results of this analysis offer valuable insights into the influence of the semi-inclusive hadronic tensor on the cross-section, providing a deeper understanding of the underlying nuclear processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.