Abstract

The architectures of deep artificial neural networks (DANNs) are routinely studied to improve their predictive performance. However, the relationship between the architecture of a DANN and its robustness to noise and adversarial attacks is less explored, especially in computer vision applications. Here we investigate the relationship between the robustness of DANNs in a vision task and their underlying graph architectures or structures. First we explored the design space of architectures of DANNs using graph-theoretic robustness measures and transformed the graphs to DANN architectures using various image classification tasks. Then we explored the relationship between the robustness of trained DANNs against noise and adversarial attacks and their underlying architectures. We show that robustness performance of DANNs can be quantified before training using graph structural properties such as topological entropy and Olivier-Ricci curvature, with the greatest reliability for complex tasks and large DANNs. Our results can also be applied for tasks other than computer vision such as natural language processing and recommender systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.