Abstract

With the rise of multidrug-resistant tuberculosis, the imperative for an alternative and superior treatment regimen, incorporating novel mechanisms of action, has become crucial. In pursuit of this goal, we have developed and synthesized a new series of rhodanine-linked enamine-carbohydrazide derivatives, exploring their potential as inhibitors of mycobacterial carbonic anhydrase. The findings reveal their efficacy, displaying notable selectivity toward the mycobacterial carbonic anhydrase 2 (mtCA 2) enzyme. While exhibiting moderate activity against human carbonic anhydrase isoforms, this series demonstrates promising selectivity, positioning these compounds as potential antitubercular agents. Compound 6d was the best one from the series with a Ki value of 9.5 µM toward mtCA 2. Most of the compounds displayed moderate to good inhibition against the Mtb H37Rv strain; compound 11k showed a minimum inhibitory concentration of 1 µg/mL. Molecular docking studies revealed that compounds 6d and 11k show metal coordination with the zinc ion, like classical CA inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call