Abstract
It is of great significance for the sustainable development of steel cities to explore the relationship between the spatial pattern change in steel plants and land cover change during the transformation of steel cities. To address the issue of unsatisfactory results for segmenting steel plants based on high-resolution remote sensing images, due to insufficient sample datasets and task complexity, we proposed a steel plant segmentation strategy that combines high-resolution remote sensing images, POI data, and OSM data. Additionally, we discussed the effect of POI data and OSM data on steel plant segmentation, analyzing the spatial pattern change in steel plants in Tangshan City during 2017–2022 and its relationship with land cover change. The results demonstrate that: (1) The proposed strategy can significantly improve the accuracy of steel plant segmentation. The introduction of POI data can significantly improve the precision of steel plant segmentation, however, it will to some extent reduce the recall of steel plant segmentation, and this phenomenon weakens as the distance threshold increases. The introduction of OSM data can effectively improve the effectiveness of steel plant segmentation, however, it has significant limitations. (2) During 2017–2022, the spatial distribution center of steel plants in Tangshan City moved obviously to the southeast, and the positive change in steel plants was mainly concentrated in the coastal regions of southern Tangshan City, while the negative change in steel plants was mainly concentrated in central Tangshan City. (3) There is a relatively strong spatial correlation between the positive change in steel plants and the transition from vegetation to built area, as well as the transition from cropland to built area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.