Abstract

Systems based on deep neural networks have made a breakthrough in many different pattern recognition tasks. However, the use of these systems with traditional architectures seems not to work properly when the amount of training data is scarce. This is the case of the on-line signature verification task. In this paper, we propose a novel writer-independent on-line signature verification systems based on Recurrent Neural Networks (RNNs) with a Siamese architecture whose goal is to learn a dissimilarity metric from the pairs of signatures. To the best of our knowledge, this is the first time these recurrent Siamese networks are applied to the field of on-line signature verification, which provides our main motivation. We propose both Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) systems with a Siamese architecture. In addition, a bidirectional scheme (which is able to access both past and future context) is considered for both LSTM- and GRU-based systems. An exhaustive analysis of the system performance and also the time consumed during the training process for each recurrent Siamese network is carried out in order to compare the advantages and disadvantages for practical applications. For the experimental work, we use the BiosecurID database comprised of 400 users who contributed a total of 11,200 signatures in four separated acquisition sessions. Results achieved using our proposed recurrent Siamese networks have outperformed the state-of-the-art on-line signature verification systems using the same database.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call