Abstract
The electron scattering process has been investigated by analyzing the interference structure in the photoelectron momentum distribution (PMD) of a hydrogen atom exposed to a single-cycle linearly polarized near-infrared laser field, based on the numerical solution of the full-dimensional time-dependent Schr\"odinger equation and the Coulomb correlative classical trajectory simulation. The interference pattern in the PMD is closely related to the form of the ultrashort pulse which is dominated by the carrier-envelope phase. A fish-bone-like pattern appears in the PMD using the sine electric field and a spider-like pattern appears using the cosine electric field. These interference structures reflect the scattering process. It is found that the stripe density of the spider-like pattern is mainly dominated by the recollision time of scattering electron trajectories, i.e., the longer the recollision time, the greater the stripe density. Therefore, the photoelectron interference pattern can be used to understand the ionization and scattering processes, and identify these processes on the attosecond time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.