Abstract

The Molecules-in-Molecules (MIM) fragmentation-based approach has been successfully used in previous studies to obtain the energies, optimized geometries, and spectroscopic properties of large molecular systems. The present work delineates a protocol to study the potential energy profiles for multistep chemical reactions using the MIM methodology. In a complex multistep chemical reaction, the fragmentation scheme needs to be changed as the reacting species transition into a new reaction step, resulting in a discontinuity in the potential energy curve of the reaction. In our approach, the fragmentation scheme for a particular step in a reaction is chosen on the basis of the nature of the bonding changes associated with that step. Thus, the reactant, transition state, and product are treated consistently throughout the reaction step, leading to an accurate energy barrier for that step. The discontinuity now occurs in describing the energies of reaction intermediates at the transition point between two reaction steps that are treated by two different fragmentation schemes. To address this issue, we propose a systematic procedure for obtaining continuous potential energy curves that are least shifted from their initial positions. The corrected MIM potential energy curves are continuous with activation energies preserved. Following this approach, energy profiles of complex reactions involving large molecular species can be obtained at high levels of theory with a reasonable computational cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call