Abstract

One of the keys for understanding radical directed dissociation in peptides is a detailed knowledge of the factors that mediate radical migration. Peptide radicals can be created by a variety of means; however, in most circumstances, the originally created radicals must migrate to alternate locations in order to facilitate fragmentation such as backbone cleavage or side chain loss. The kinetics of radical migration are examined herein by comparing results from ortho-, meta-, and para-benzoyl radical positional isomers for several peptides. Isomers of a constrained cyclic peptide generated by several orthogonal radical initiators are also probed as a function of charge state. Cumulatively, the results suggest that small changes in radical position can significantly impact radical migration, and overall structural flexibility of the peptide is also an important controlling factor. A particularly interesting pathway for the peptide RGYALG that is sensitive to ortho versus meta or para substitution was fully mapped out by a suite of deuterium labeled peptides. This data was then used to optimize parameters in molecular dynamics-based simulations, which were subsequently used to obtain further insight into the structural underpinnings that most strongly influence the kinetics of radical migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.