Abstract
Deuteron-induced reactions, in particular (d,p) one-neutron transfer reactions, have been used for decades to investigate the structure of nuclei. These reactions, carried out in inverse kinematics, are expected to play a central role in the study of weakly-bound systems at modern radioactive beam facilities. While the theoretical framework and its computational implementation for describing (d,p) reactions have seen much progress over the decades, open questions remain and need to be addressed, including the proper treatment of transfers to resonance states. Recently, a new formalism was proposed [1] that, in principle, describes transfers to both bound and resonance states. The new formalism is summarized here and illustrated; implications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.