Abstract

This paper explores the superior performance of quaternion multi-layer perceptron (QMLP) neural networks over real-valued multi-layer perceptron (MLP) neural networks, a phenomenon that has been empirically observed but not thoroughly investigated. The study utilizes loss surface visualization and projection techniques to examine quaternion-based optimization loss surfaces for the first time. The primary contribution of this research is the statistical evidence that QMLP models yield smoother loss surfaces than real-valued neural networks, which are measured and compared using a robust quantitative measure of loss surface “goodness” based on estimates of surface curvature. Extensive computational testing validates the effectiveness of these surface curvature estimates. The paper presents a comprehensive comparison of the average surface curvature of a tuned QMLP model and a tuned real-valued MLP model on both a regression task and a classification task. The results provide strong support for the improved optimization performance observed in QMLPs across various problem domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.