Abstract

In this paper, we examine q-Bernstein-Bézier surfaces in Minkowski space-[Formula: see text] with q as the shape parameter. These surfaces, a generalization of Bézier surfaces, have applications in mathematics, computer-aided geometric design, and computer graphics for the surface formation and modeling. We analyze the timelike and spacelike cases of q-Bernstein-Bézier surfaces using known boundary control points. The mean curvature and Gaussian curvature of these q-Bernstein-Bézier surfaces are computed by finding the respective fundamental coefficients. We also investigate the shape operator dependency for timelike and spacelike q-Bernstein-Bézier surfaces in Minkowski space-[Formula: see text], and provide biquadratic and bicubic q-Bernstein-Bézier surfaces as illustrative examples for different values of the shape controlling parameter q.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.