Abstract

Malaria is the third most prevalent cause of global mortality and is an interesting case of evolutionary selection. In response to high frequency of malaria infection, several host genetic factors have been selected, such as Hemoglobin variants, Glucose-6-phosphate dehydrogenase (G6PD) deficiency and pyruvate kinase deficiency. Among these popular host genetic factors, deficiency of pyruvate kinase enzyme is one of the most important factor that provide resistance against malaria. Regulation of this enzyme at the level of transcription is important and several factors may play crucial role in regulation of this enzyme. DNA sequence variation and epigenetic factors modifying transcriptional regulation of gene have been explored in context of several diseases. In the present study, we explored the factors modifying transcription regulation of pyruvate kinase gene with the help of Bioinformatics tools. On the basis of our predictions we hypothesize that any factor that reduces the availability (level) or activity of pyruvate kinase enzyme must play a strong role in resistance to malaria. Thus, factors reducing the activity (loss of function) or level of pyruvate kinase have been selected to provide resistance against malaria primarily in endemic regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.