Abstract
Understanding cancer mechanisms, defining subtypes, predicting prognosisand assessing therapy efficacy are crucial aspects of cancer research. Gene-expression signatures derived from bulk gene expression data have played a significant role in these endeavors over the past decade. However, recent advancements in high-resolution transcriptomic technologies, such as single-cell RNA sequencing and spatial transcriptomics, have revealed the complex cellular heterogeneity within tumors, necessitating the development of computational tools to characterize tumor mass heterogeneity accurately. Thus we implemented signifinder, a novel R Bioconductor package designed to streamline the collection and use of cancer transcriptional signatures across bulk, single-cell, and spatial transcriptomics data. Leveraging publicly available signatures curated by signifinder, users can assess a wide range of tumor characteristics, including hallmark processes, therapy responses, and tumor microenvironment peculiarities. Through three case studies, we demonstrate the utility of transcriptional signatures in bulk, single-cell, and spatial transcriptomic data analyses, providing insights into cell-resolution transcriptional signatures in oncology. Signifinder represents a significant advancement in cancer transcriptomic data analysis, offering a comprehensive framework for interpreting high-resolution data and addressing tumor complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.