Abstract
Protein conformational landscapes define their functional properties as well as their proteostasis. Hence, detailed mapping of these landscapes is necessary to understand and modulate protein conformation. The combination of high pressure and NMR provides a particularly powerful approach to characterizing protein conformational transitions. First, pressure, because its effects on protein structure arise from elimination of solvent excluded void volume, represents a more subtle perturbation than chemical denaturants, favoring the population of intermediates. Second, the residue-specific and multifaceted nature of NMR observables informs on many local structural properties of proteins, aiding in the characterization of intermediate and excited states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.