Abstract

Proprotein convertase subtilisin/kexin 9 (PCSK9) is a notable target for the treatment of hypercholesterolemia because it regulates the population of the low-density lipoprotein receptor (LDLR) on liver cells. The PCSK9 zymogen is a serine protease that spontaneously undergoes a double self-cleavage step. Available X-ray structures depict the PCSK9 mature state, but the atomic details of the zymogen state of the enzyme are still unknown. Additionally, why the protease activity of PCSK9 is blocked after the second autoprocessing step remains unclear, as this deviates from other members of the PCSK family. By performing constant-pH molecular dynamics (MD) simulations, we investigated the protonation state of the catalytic triad of PCSK9 and found that it strongly influences the catalytic properties of the enzyme. Moreover, we determined the final step of the maturation process by classical and steered MD simulations. This study could facilitate the identification of ligands capable of interfering with the PCSK9 maturation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.