Abstract
In islet transplantation, the use of dynamic hypothermic preservation techniques is a current challenge. This study compares the efficacy of 3 pancreas preservation methods: static cold storage, hypothermic machine perfusion (HMP), and oxygenated HMP. A standardized human pancreas split model was employed using discarded organs from both donation after brain death (n = 15) and donation after circulatory death (DCD) (n = 9) donors. The pancreas head was preserved using static cold storage (control group), whereas the tail was preserved using the 3 different methods (study group). Data on donor characteristics, pancreas histology, isolation outcomes, and functional tests of isolated islets were collected. Insulin secretory function evaluated by calculating stimulation indices and total amount of secreted insulin during high glucose stimulation (area under the curve) through dynamic perifusion experiments was similar across all paired groups from both DCD and donation after brain death donors. In our hands, islet yield (IEQ/g) from the pancreas tails used as study groups was higher than that of the pancreas heads as expected although this difference did not always reach statistical significance because of great variability probably due to suboptimal quality of organs released for research purposes. Moreover, islets from DCD organs had greater purity than controls (P ≤ 0.01) in the HMP study group. Furthermore, our investigation revealed no significant differences in pancreas histology, oxidative stress markers, and apoptosis indicators. For the first time, a comparative analysis was conducted, using a split model, to assess the effects of various preservation methods on islets derived from pancreas donors. Nevertheless, no discernible variances were observed in terms of islet functionality, histological attributes, or isolation efficacy. Further investigations are needed to validate these findings for clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.