Abstract

The effect of drying on the lipid profiles of the lean (LN) and fat (FT) portions of non-smoked bacon was investigated based on a lipidomic approach. The study identified 989 lipids belonging to 26 subclasses in bacon, with triglyceride and phosphatidylethanolamine being the most abundant. Triglycerides, phosphatidylcholines, and phosphatidylethanolamines were significantly decreased, whereas diglycerides, free fatty acids, and lysophospholipids were increased after drying. TG (16:1/18:1/18:2) and TG (16:0/18:1/18:1) were the primary lipids responsible for the binding of volatiles. Based on VIP > 1 and P < 0.05, 355 and 444 differential lipids were observed in the FT and LN portions, respectively. In total, 26 lipids were screened as key precursors for the production of key aroma compounds of bacon in the FT portion, while 127 were screened in the LN portion. PE (18:0/18:2) is believed to be the primary lipid molecule precursors responsible for the development of aroma in both lean and fat portions. This research has enhanced the comprehension of the generation of key aroma compounds derived from lipid oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call