Abstract

The idea that quantum effects could be harnessed to allow faster computation was first proposed by Feynman. As of 2020 we appear to have achieved ‘quantum supremacy’, that is, a quantum computer that performs a given task faster than its classical counterpart. This paper examines some possibilities opened up by potential future application of quantum computing to transportation simulation and planning. To date, no such research was found to exist, therefore we begin with an introduction to quantum computing for the programmers of transport models. We discuss existing quantum computing research relevant to transportation, finding developments in network analysis, shortest path computation, multi-objective routing, optimization and calibration – of which the latter three appear to offer the greater promise in future research. Two examples are developed in greater detail, (1) an application of Grover’s quantum algorithm for extracting the mean, which has general applicability towards summarizing distributions which are expensive to compute classically, is applied to an assignment or betweenness model - quantum speedup is elusive in the general case but achievable when trading speed for accuracy for limited outputs; (2) quantum optimization is applied to an activity-based model, giving a theoretically quadratic speedup. Recent developments notwithstanding, implementation of quantum transportation algorithms will for the foreseeable future remain a challenge due to space overheads imposed by the requirement for reversible computation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call