Abstract
The paper deals with the exploration of subsequences of polygonal numbers of different sides derived through step-by-step elimination of terms of the original sequences. Eliminations are based on special rules similarly to how the classic sieve of Eratosthenes was developed through the elimination of multiples of primes. These elementary number theory activities, appropriate for technology-enhanced secondary mathematics education courses, are supported by a spreadsheet, Wolfram Alpha, Maple, and the Online Encyclopedia of Integer Sequences. General formulas for subsequences of polygonal numbers referred to in the paper as polygonal number sieves of order k, that include base-two exponential functions of k, have been developed. Different problem-solving approaches to the derivation of such and other sieves based on the technology-immune/technology-enabled framework have been used. The accuracy of computations and mathematical reasoning is confirmed through the technique of computational triangulation enabled by using more than one digital tool. A few relevant excerpts from the history of mathematics are briefly featured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.