Abstract

Plasmonic photocatalysis has emerged as a new frontier in heterogeneous catalysis due to its promise in harvesting light to drive reactions. Yet many mechanistic aspects remain to be unambiguously defined. Using single-molecule fluorescence imaging, Li et al studied a fluorogenic and plasmon-enhanced reaction, amplex red oxidation, on single Au nanorods at sub-turnover resolution and under operando conditions. Both the rate-determining step and its activation energy were identified from the multiple elemental reactions. The results provide insights into the mechanism of plasmonic photocatalysis that may help the rationale design of heterogeneous catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.