Abstract

The functionality of ferroelastic domain walls in ferroelectric materials is explored in real-time via the in situ implementation of computer vision algorithms in scanning probe microscopy (SPM) experiment. The robust deep convolutional neural network (DCNN) is implemented based on a deep residual learning framework (Res) and holistically nested edge detection (Hed), and ensembled to minimize the out-of-distribution drift effects. The DCNN is implemented for real-time operations on SPM, converting the data stream into the semantically segmented image of domain walls and the corresponding uncertainty. Further the pre-defined experimental workflows perform piezoresponse spectroscopy measurement on thus discovered domain walls, and alternating high- and low-polarization dynamic (out-of-plane) ferroelastic domain walls in a PbTiO3 (PTO) thin film and high polarization dynamic (out-of-plane) at short ferroelastic walls (compared with long ferroelastic walls) in a lead zirconate titanate (PZT) thin film is reported. This work establishes the framework for real-time DCNN analysis of data streams in scanning probe and other microscopies and highlights the role of out-of-distribution effects and strategies to ameliorate them in real time analytics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.