Abstract

The ability to photochemically activate a drug, both when and where needed, requires optimisation of the difference in biological activity between each isomeric state. As a step to this goal, we report small-molecule- and peptide-based inhibitors of the same protease-trypsin-to better understand how photoswitchable drugs interact with their biological target. The best peptidic inhibitor displayed a more than fivefold difference in inhibitory activity between isomeric states, whereas the best small-molecule inhibitor only showed a 3.4-fold difference. Docking and molecular modelling suggest this result is due to a large change in 3D structure in the key binding residues of the peptidic inhibitor upon isomerisation; this is not observed for the small-molecule inhibitor. Hence, we demonstrate that significant structural changes in critical binding motifs upon irradiation are essential for maximising the difference in biological activity between isomeric states. This is an important consideration in the design of future photoswitchable drugs for clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.