Abstract

With the objective of simulating the physical behavior of electrons in a dynamic background, we investigate a cold atomic Bose-Fermi mixture confined in an optical lattice potential solely affecting the bosons. The bosons, residing in the deep superfluid regime, inherit the periodicity of the optical lattice, subsequently serving as a dynamic potential for the polarized fermions. Owing to the atom-phonon interaction between the fermions and the condensate, the coupled system exhibits a Berezinskii-Kosterlitz-Thouless transition from a Luttinger liquid to a Peierls phase. However, under sufficiently strong Bose-Fermi interaction, the Peierls phase loses stability, leading to either a collapsed or a separated phase. We find that the primary function of the optical lattice is to stabilize the Peierls phase. Furthermore, the presence of a confining harmonic trap induces a diverse physical behavior, surpassing what is observed for either bosons or fermions individually trapped. Notably, under attractive Bose-Fermi interaction, the insulating phase may adopt a fermionic wedding-cake-like configuration, reflecting the dynamic nature of the underlying lattice potential. Conversely, for repulsive interaction, the trap destabilizes the Peierls phase, causing the two species to separate. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.