Abstract
The health impact of airborne contaminants has been challenging to assess due to current limitations in measurement technologies. The emergence of wearable passive samplers coupled with high resolution mass spectrometry (HR-MS) chemical analysis has enabled comprehensive characterization of personal exposures. We conducted a repeated-measure study among 84 older adults in Jinan, China, as part of the Biomarkers for Air Pollutants Exposure (China BAPE) study. Study objectives were: 1) to characterize the occurrence, magnitude, and distribution of personal exposure to airborne contaminants; 2) to evaluate the temporal variation of chemical exposures across the study population; and 3) to identify behavioral and environmental factors that influence the observed variance in chemical exposures. The FreshAir wristband was worn by participants for three consecutive days each month from September 2018 to January 2019 and collected with paired time-activity logs. Passive air samplers were also deployed in parallel at a local outdoor air monitoring station. Spearman's Rho trend test and trajectory cluster analysis were used to identify exposure trends and variation patterns, respectively. Out of the 70 airborne compounds of potential concern screened, 26 compounds from 10 chemical classes were found to be above detection thresholds across >70% of the study population. Personal exposures were predominantly characterized by nine polycyclic aromatic hydrocarbons (PAHs), four phthalates, three nitroaromatics, and two volatile organic compounds (VOCs). Phthalate personal exposures were positively correlated with outdoor temperatures while the inverse relationship was observed for certain PAHs (p<0.05). Specifically, dimethyl phthalate (rs=0.31) decreased as temperatures declined, while nitrobenzene (rs=-0.35) and naphthalene (rs=-0.40) increased as temperatures decreased. Compared to levels measured at the outdoor air monitoring site, personal exposure of phthalates was elevated (p<0.05) and hexachlorobutadiene was lower across participants (p<0.01). Personal exposure of these chemicals was further found to be weakly associated with daily duration participants spent outdoors. Individuals formed distinct clusters based on trajectories of chemical exposures across the sampling period (September to January), potentially suggestive of distinct emission sources. In conclusion, we demonstrate the feasibility of characterizing the occurrence and magnitude of personal exposure to airborne chemical contaminants using passive wristband samplers. The temporal variability of these personal exposure profiles was highlighted and with distinct trends identified across different groups of individuals. Future studies will integrate this data with other omics datasets collected from this population of Chinese older adults to investigate associations between exposure profiles and health relevant biomarkers, to provide evidence in feasibility of disease prevention through environmental improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.