Abstract

Brain damage related to perinatal asphyxia is the second cause of neuro-disability worldwide. Its incidence was estimated in 2010 as 8.5 cases per 1000 live births worldwide, with no further recent improvement even in more industrialized countries. If so, hypoxic-ischemic encephalopathy is still an issue of global health concern. It is thought that a consistent number of cases may be avoided, and its sequelae may be preventable by a prompt and efficient physical and therapeutic treatment. The lack of early, reliable, and specific biomarkers has up to now hampered a more effective use of hypothermia, which represents the only validated therapy for this condition. The urge to unravel the biological modifications underlying perinatal asphyxia and hypoxic-ischemic encephalopathy needs new diagnostic and therapeutic tools. Metabolomics for its own features is a powerful approach that may help for the identification of specific metabolic profiles related to the pathological mechanism and foreseeable outcome. The metabolomic profiles of animal and human infants exposed to perinatal asphyxia or developing hypoxic-ischemic encephalopathy have so far been investigated by means of 1H nuclear magnetic resonance spectroscopy and mass spectrometry coupled with gas or liquid chromatography, leading to the identification of promising metabolomic signatures. In this work, an extensive review of the relevant literature was performed.

Highlights

  • Perinatal asphyxia (PA) and neonatal encephalopathy (NE) are well-known causes of neonatal morbidity and mortality worldwide

  • In the last 20 years, almost 30 scientific papers dealing with metabolomics and PA have appeared in the literature

  • With the advent of ‘omics’ techniques, the main interest of both biological and clinical research has rapidly moved from the ‘ideal biomarker’ of damage/outcome to a biological signature/phenotype related to the injury’s biological network

Read more

Summary

Introduction

Perinatal asphyxia (PA) and neonatal encephalopathy (NE) are well-known causes of neonatal morbidity and mortality worldwide. Whenever a hypoxic-ischemic event in the peripartum period may be identified as a putative/certain biological cause, the clinical condition is referred as hypoxic-ischemic encephalopathy (HIE). Despite a huge improvement being observed in the availability of new and efficacious diagnostic and therapeutic tools in gynecologists’ and pediatricians’ paraphernalia in the last decades, neurological and intellectual disabilities still represent an unbearable burden for families and societies in nearly. Since 2010, experts have highlighted the need for improvements in adjuvant therapies to hypothermia and in the identification and validation of biomarkers of both damage and outcome to reach the best protocol to protect the infant’s brain and reduce the disabilities related to such a condition [2]

Pathophysiology of Perinatal HIE
Therapeutic Strategies for HIE
Looking for Biomarkers
Results and Discussion
Method
Biomarkers Findings
Animal Models
Human Studies
Limits and Pitfalls
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.