Abstract
ObjectiveIn multiple sclerosis (MS), iron rim lesions (IRLs) on magnetic resonance imaging (MRI) are associated with pronounced intralesional tissue damage. The aim of this study was to investigate (peri-)lesional and structural connectivity tissue damage in IRLs compared to non-IRLs. Material and methodsMRI was acquired on a 3 T system. Tissue integrity was assessed using the T1/T2-weighted (T1/T2w) ratio. Furthermore, we assessed the impact on structural network connectivity accounting for differences in lesion volumes and T1/T2w values. ResultsSeventy-six patients (38 with at least one IRL and 38 age- and sex-matched patients without IRLs) were included. In the IRL-group, T1/T2w ratios of IRLs were significantly lower compared to non-IRLs (p < 0.05). When comparing the T1/T2w ratios in non-IRLs between the IRL-group and non-IRL group, there was no significant difference (p = 0.887). We observed a centrifugal decrease in microstructural damage from lesions to the perilesional white matter. In the IRL-group, T1/T2w ratios in the perilesional white matter 3–8 mm distant to the lesion were significantly lower in IRLs compared to non-IRLs. We found no significant differences in the amount of network disruption between both lesion types (p = 0.122). ConclusionT1/T2w represents an interesting candidate to capture a pronounced intra- and perilesional tissue damage of IRLs. However, our preliminary results suggest that a pronounced tissue damage might not result in a higher disruption to structural connectivity networks in IRLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.