Abstract
The formation of disinfection byproducts (DBPs) during UV/chlorine treatment, especially nitrogenous DBPs, is not well understood. This study investigated the formation mechanisms for dichloroacetonitrile (DCAN) from typical amino compounds during UV/chlorine treatment. Compared to chlorination, the yields of DCAN increase by 88-240% during UV/chlorine treatment from real waters, while the yields of DCAN from amino compounds increase by 3.3-5724 times. Amino compounds with electron-withdrawing side chains show much higher DCAN formation than those with electron-donating side chains. Phenylethylamine, l- phenylalanine, and l-phenylalanyl-l-phenylalanine were selected to represent amines, amino acids, and peptides, respectively, to investigate the formation pathways for DCAN during UV/chlorine treatment. First, chlorination of amines, amino acids, and peptides rapidly forms N-chloramines via chlorine substitution. Then, UV photolysis but not radicals promotes the transformation from N-chloramines to N-chloroaldimines and then to phenylacetonitrile, with yields of 5.4, 51.0, and 19.8% from chlorinated phenylethylamine, l-phenylalanine, and l-phenylalanyl-l-phenylalanine to phenylacetonitrile, respectively. Finally, phenylacetonitrile is transformed to DCAN with conversion ratios of 14.2-25.6%, which is attributed to radical oxidation, as indicated by scavenging experiments and density functional theory calculations. This study elucidates the pathways and mechanisms for DCAN formation from typical amino compounds during UV/chlorine treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.