Abstract
MotivationPhylogenetic trees are now routinely inferred on large scale high performance computing systems with thousands of cores as the parallel scalability of phylogenetic inference tools has improved over the past years to cope with the molecular data avalanche. Thus, the parallel fault tolerance of phylogenetic inference tools has become a relevant challenge. To this end, we explore parallel fault tolerance mechanisms and algorithms, the software modifications required and the performance penalties induced via enabling parallel fault tolerance by example of RAxML-NG, the successor of the widely used RAxML tool for maximum likelihood-based phylogenetic tree inference.ResultsWe find that the slowdown induced by the necessary additional recovery mechanisms in RAxML-NG is on average 1.00 ± 0.04. The overall slowdown by using these recovery mechanisms in conjunction with a fault-tolerant Message Passing Interface implementation amounts to on average 1.7 ± 0.6 for large empirical datasets. Via failure simulations, we show that RAxML-NG can successfully recover from multiple simultaneous failures, subsequent failures, failures during recovery and failures during checkpointing. Recoveries are automatic and transparent to the user.Availability and implementationThe modified fault-tolerant RAxML-NG code is available under GNU GPL at https://github.com/lukashuebner/ft-raxml-ng.Supplementary information Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.