Abstract

SummaryNeutral zinc alkoxide complexes show high activity toward the ring-opening polymerization of cyclic esters and carbonates, to generate biodegradable plastics applicable in several areas. Herein, we use a ferrocene-chelating heteroscorpionate complex in redox-switchable polymerization reactions, and we show that it is a moderately active catalyst for the ring-opening polymerization of L-lactide, ɛ-caprolactone, trimethylene carbonate, and δ-valerolactone. Uniquely for this type of catalyst, the oxidized complex has a similar polymerization activity as the corresponding reduced compound, but displays significantly different rates of reaction in the case of trimethylene carbonate and δ-valerolactone. Investigations of the oxidized compound suggest the presence of an organic radical rather than an Fe(III) complex. Electronic structure and density functional theory (DFT) calculations were performed to support the proposed electronic states of the catalytic complex and to help explain the observed reactivity differences. The catalyst was also compared with a monomeric phenoxide complex to show the influence of the phosphine-zinc interaction on catalytic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.