Abstract
Achieving effective nitrogen removal remains a significant challenge faced by constructed wetlands. Although organic matter is a crucial factor influencing nitrogen removal, little attention has been paid to the impact of organic matter conversion pathways on nitrogen removal in constructed wetlands. Here, we showed that endogenous microorganisms performing carbon internalization could be easily enriched in tidal flow constructed wetlands (TFCWs) under its special rhythmic cycle of anaerobic/aerobic operational mode. Endogenous microorganisms could translate influent carbon sources into intracellular carbons during the anaerobic stage and supply the carbon source for endogenous denitrification after the aerobic stage (rest period). Based on these findings, an innovative combined TFCW and Nitrifying-CW system was developed, and robust total nitrogen (TN) removal (82% on average) was achieved even under carbon source limiting conditions. This performance was a substantial improvement compared to the conventional single bed TFCW with multiple “tides” (corresponding to the multiple contact/rest periods) with TN removal of only 54% on average. Simultaneous nitrification-endogenous denitrification (SNED) was found to be the major nitrogen removal pathway in the proposed system. Compared with classical nitrification-denitrification, simultaneous nitrification-endogenous denitrification brings high nitrogen conversion rates and significantly reduces the demand for oxygen and organic carbon. Furthermore, microbial community analysis indicated that endogenous microorganisms such as Candidatus_Competibacter and Defluviicoccus were successfully enriched, accounting for 50.73% and 3.46% in CW1, and 25.25% and 1.76% in CW2, respectively. Together, these mechanisms allow the proposed system to achieve efficient TN removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.