Abstract

The optimization of organic reaction conditions to obtain the target product in high yield is crucial to avoid expensive and time-consuming chemical experiments. Advancements in artificial intelligence have enabled various data-driven approaches to predict suitable chemical reaction conditions. However, for many novel syntheses, the process to determine good reaction conditions is inevitable. Bayesian optimization (BO), an iterative optimization algorithm, demonstrates exceptional performance to identify reagents compared to synthesis experts. However, BO requires several initial randomly selected experimental results (yields) to train a surrogate model (approximately 10 experimental trials). Parts of this process, such as the cold-start problem in recommender systems, are inefficient. Here, we present an efficient optimization algorithm to determine suitable conditions based on BO that is guided by a graph neural network (GNN) trained on a million organic synthesis experiment data. The proposed method determined 8.0 and 8.7% faster high-yield reaction conditions than state-of-the-art algorithms and 50 human experts, respectively. In 22 additional optimization tests, the proposed method needed 4.7 trials on average to find conditions higher than the yield of the conditions recommended by five synthesis experts. The proposed method is considered in a situation of having a reaction dataset for training GNN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.