Abstract

The development of new singlet fission chromophores is a vibrant area of research to explore the possibility of efficient photovoltaic devices. Using high-level ab-initio density matrix renormalization group calculations, we present a systematic analysis of BN-doped perylenes for their potential application as singlet fission candidates. Four singlet fission chromophores are identified considering the monomer-based properties and their excitonic characters are further analyzed in a dimer configuration optimized in a six-dimensional space for local maxima of fission rates. Furthermore, a multistate multimode vibronic Hamiltonian is employed to identify intra- and interstate vibrational pathways for excitation energy modulation. Several photophysical properties such as Davydov splitting, activation energy and vibronic admixture of multiexcitonic and charge-transfer states are calculated for physically accessible dimers. The optimal dimer packing results in appropriate vibrational relaxation of singlet fission states and promotes significant population transfer which would be more attenuated without such couplings. This work not only identifies potential singlet fission systems with favorable electronic properties but also highlights the sensitivity of dimer packings with respect to the substitution patterns in singlet fission chromophores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call