Abstract

Camphor leaf (CL) was widely used to extract camphor oil and thus led to abundant forestry waste. In order to reduce pollution, the waste CL was used to prepare bio-adsorbent for Pb(II) removal after alkali treatment and functional modification. The effects of solution pH, initial Pb(II) concentration, contact time and solution temperature were investigated on adsorption process to evaluate the potential application in heavy metal ions' removal. It was found that the massive hydroxyl groups released and plenty of micro-pores formed after the alkali treatment of CL bio-adsorbent, which obviously increased the Pb(II) adsorption. And the adsorption performance promoted continually after further functional modification by ionized 1,2,3,4-butanetetracarboxylic acid (BTCA). The increase of pH was favourable for the adsorption even though the precipitation effect was deducted. Linear fitting method was more suitable to describe the adsorption process than nonlinear fitting method, including adsorption isotherms and adsorption kinetics research. The adsorption thermodynamics was better to be described by nonlinear fitting method due to its lower root mean square error (RMSE) value and higher R2 value. Among which, the adsorption isotherm and adsorption kinetics were fitted well to Langmuir model and pseudo-second-order model, respectively. The adsorption thermodynamics was exothermic in nature and the process was spontaneous at low solution temperature. The adsorption mechanism was revealed as the combination of dominant chemical adsorption and assistant physical adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call