Abstract

BackgroundThis study investigated the antidiabetic and antioxidant properties of hemp seed oil using various bioanalytical methods. Furthermore, this study determined the suppressive properties of hemp seed oil on α-amylase, acetylcholinesterase and carbonic anhydrase II that purified by the sepharose-4B-L-Tyrosine-sulfanilamide affinity chromatoghraphy, all of which are related to different metabolic diseases. Moreover, the phenolic concentration in the essential oil was quantified through LC–HRMS chromatography. Thirteen distinct phenolic compounds were detected in hemp seed oil. Additionally, both the chemical components and quantity of essential oils within hemp seed oil were assessed through GC–FID and GC/MS analyses.ResultsThe predominant essential oils in hemp seed oil included linoleoyl chloride (34.62%), linoleic acid (33.21%), and 2-4-di-tert-butylphenol (5.79%). Hemp seed oil's ability to scavenge radicals was studied through the use of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazil bioanalytical radical scavenging methods. The results unveiled its potent radical-scavenging properties, with an 46.20 μg/mL for 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals and IC50 of 9.76 μg/mL for 1,1-diphenyl-2-picrylhydrazil radicals. The investigation also extended to explore the reducing capabilities of Fe3+-2,4,6-tri(2-pyridyl)-S-triazine, copper (Cu2+), and iron (Fe3+). Hemp seed oil demonstrated notable inhibitory effect against α-amylase (IC50: 545.66 μg/mL), achethylcholinesterase (IC50: 28.00 μg/mL), and carbonic anhydrase II (IC50: 322.62 μg/mL).ConclusionsThis interdisciplinary research will prove valuable and set the stage for future investigations into the antioxidant characteristics and enzyme inhibition patterns of plants and plants oils that hold medical and industrial significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.