Abstract
Semantic segmentation, as dense pixel-wise classification task, played an important tache in scene understanding. There are two main challenges in many state-of-the-art works: 1) most backbone of segmentation models that often were extracted from pretrained classification models generated poor performance in small categories because they were lacking in spatial information and 2) the gap of combination between high-level and low-level features in segmentation models has led to inaccurate predictions. To handle these challenges, in this paper, we proposed a new tailored backbone and attention select module for segmentation tasks. Specifically, our new backbone was modified from the original Resnet, which can yield better segmentation performance. Attention select module employed spatial and channel self-attention mechanism to reinforce the propagation of contextual features, which can aggregate semantic and spatial information simultaneously. In addition, based on our new backbone and attention select module, we further proposed our segmentation model for street scenes understanding. We conducted a series of ablation studies on two public benchmarks, including Cityscapes and CamVid dataset to demonstrate the effectiveness of our proposals. Our model achieved a mIoU score of 71.5% on the Cityscapes test set with only fine annotation data and 60.1% on the CamVid test set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.