Abstract
Inductive program synthesis (PS) has recently begun to emerge as a useful new approach to automatically generate algorithms in quantum chemistry, as demonstrated in recent applications to the vibrational Schrödinger equation for simple model systems with one or two degrees-of-freedom. Here, we report a new physics-informed approach to inductive PS that is more conducive to the generation of discrete variable representation algorithms for real molecular systems. The new framework ensures separability of the kinetic and potential operators and does not require an exact solution to compare synthesized algorithmic predictions with. Algorithms with a tridiagonal matrix structure are generated via a variational-based stochastic optimization procedure. Crucially, through an extensive testing procedure, we demonstrate that variationally synthesized algorithms perform just as well as those generated using a target function. Assuming a direct product representation of normal coordinates, these algorithms are applied to three triatomic molecules. In total, we identify a set of seven PS algorithms that accurately reproduce the vibrational spectra of H2O, NO2, and SO2, as predicted by Colbert-Miller and sine-DVR algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.