Abstract

Chitosan shows good biocompatibility and biodegradability, but the poor water solubility and low transfection efficiency hinder its applications as a gene delivery vector. We here report the detailed synthesis and characterization of a novel ampholytical chitosan derivative, N-imidazolyl-O-carboxymethyl chitosan (IOCMCS), used for high performance gene delivery. After chemical modification, the solubility of the resulting polymer is enhanced, and the polymer is soluble in a wide pH range (4-10). Gel electrophoresis study reveals the strong binding ability between plasmid DNA and the IOCMCS. Moreover, the IOCMCS does not induce remarkable cytotoxicity against human embryonic kidney (HEK293T) cells. The cell transfection results with HEK293T cells using the IOCMCS as gene delivery vector demonstrate the high transfection efficiency, which is dependent on the degree of imidazolyl substitution. Therefore, the IOCMCS is a promising candidate as the DNA delivery vector in gene therapy due to its high solubility, high gene binding capability, low cytotoxicity, and high gene transfection efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.