Abstract

ABSTRACTThe introduction of eco-routing systems has been suggested as a promising strategy to reduce carbon dioxide emissions and criteria pollutants. The objective of this study is to scrutinize the impacts of an eco-routing guidance system on emissions through the use of a case study in a commuting corridor. This research aims at assessing the potential environmental benefits in terms of different pollutant emissions. Simultaneously, it addresses the extent of variations in system travel time (STT) that each eco-routing strategy implies. The methodology consists of three distinct phases. The first phase corresponds to the adjustment of a microsimulation platform of traffic and emissions with empirical data previously collected. Second, to volume-emission-functions (VEF), developed based on the integrated modeling structure. Final, to different scenarios of traffic flow optimization performed at the network level based on a simplified assignment procedure. The results show that if the traffic assignment is performed with the objective to minimize overall impacts, then the total system environmental damage costs can be reduced up to 9% with marginal oscillations in total STT. However, if drivers are advised based on their own emissions minimization, total system emissions may be higher than under the standard user equilibrium flow pattern. Specifically, environmentally friendly navigation algorithms focused on individual goals may tend to divert traffic to roads with less capacity affecting the performance of the remaining traffic. This case study brings new insights about the difficulties and potentials of implementing such systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call