Abstract
Skin wound healing is a complex mechanism which requires a lot of energy, mainly provided by mitochondrial respiration. However, little is known about the mitochondrial bioenergetics of mice skin. We sought to develop a microplate-based assay to directly measure oxygen consumption in whole mice skin with the goal of identifying mitochondrial dysfunction in diabetic skin using an extracellular flux. Different parameters were optimized to efficiently measure the oxygen consumption rate (OCR). First, the most pertinent skin side of wild-type mice was first determined. Then, concentrations of mitochondrial inhibitors were then optimized to get the best efficacy. Finally, punch sizes were modulated to get the best OCR profile. Dermis had the best metabolic activity side of the skin. Unlike the increased concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and rotenone/antimycin A, which showed no improvement of these drugs' effects, varying the skin punch size was successful. Finally, type II diabetic (T2D) skin produced less ATP through mitochondrial metabolism and had a greater non-mitochondrial oxygen consumption than wild-type or type I diabetic (T1D) skin. Here we designed, for the first time, a reliable protocol to measure mitochondria function in whole mouse skin. Our optimized protocol was valuable in assessing alterations associated with diabetes and could be applied to future studies of pathological human skin metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.