Abstract

To develop a new high-protein woody forage resource for livestock to alleviate feed shortages in the tropics, we applied PacBio single-molecule, real-time (SMRT) sequencing to explore the community structure, species diversity and metabolic gene clusters of natural microorganisms associated with paper mulberry (PM) silage fermentation. High levels of microbial diversity and abundance were observed in PM raw material, and these levels decreased with the progression of silage fermentation. During woody ensiling, the dominant bacteria shifted from pathogenic Gram-negative Proteobacteria to beneficial Gram-positive Firmicutes. Lactic acid bacteria became the most dominant bacteria that affected fermentation quality in terminal silages. Global and overview maps, carbohydrate metabolism and amino-acid metabolism were the important microbial metabolic pathways that impacted the final fermentation product of silage. PacBio SMRT sequencing revealed specific microbial-related information concerning silage. PM is rich in nutrients and macro mineral contents, which are preserved well during ensiling, indicating that PM silage can serve as a new woody resource suitable for ruminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.