Abstract

Over the past years, plenty of evidence has emerged illustrating how metabolism supports many aspects of cellular function and how metabolic reprogramming can drive cell differentiation and fate. Here, we present a method to assess the metabolic configuration of single cells within their native tissue microenvironment via the visualization and quantification of multiple enzymatic activities measured at saturating substrate conditions combined with subsequent cell type identification. After careful validation of the approach and to demonstrate its potential, we assessed the intracellular metabolic configuration of different human immune cell populations in healthy and tumor colon tissue. Additionally, we analyzed the intercellular metabolic relationship between cancer cells and cancer-associated fibroblasts in a breast cancer tissue array. This study demonstrates that the determination of metabolic configurations in single cells could be a powerful complementary tool for every researcher interested to study metabolic networks in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.