Abstract

We re-visit the issue of hardware consistency models in the new context of massively-threaded throughput-oriented processors (MTTOPs). A prominent example of an MTTOP is a GPGPU, but other examples include Intel's MIC architecture and some recent academic designs. MTTOPs differ from CPUs in many significant ways, including their ability to tolerate latency, their memory system organization, and the characteristics of the software they run. We compare implementations of various hardware consistency models for MTTOPs in terms of performance, energy-efficiency, hardware complexity, and programmability. Our results show that the choice of hardware consistency model has a surprisingly minimal impact on performance and thus the decision should be based on hardware complexity, energy-efficiency, and programmability. For many MTTOPs, it is likely that even a simple implementation of sequential consistency is attractive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.