Abstract

The geometric shape of a cell is strongly influenced by the cytoskeleton, which, in turn, is regulated by integrin-mediated cell-extracellular matrix (ECM) interactions. To investigate the mechanical role of integrin in the geometrical interplay between cells and the ECM, we proposed a single-cell micropatterning technique combined with molecular tension fluorescence microscopy (MTFM), which allows us to characterize the mechanical properties of cells with prescribed geometries. Our results show that the curvature is a key geometric cue for cells to differentiate shapes in a membrane-tension- and actomyosin-dependent manner. Specifically, curvatures affect the size of focal adhesions (FAs) and induce a curvature-dependent density and spatial distribution of strong integrins. In addition, we found that the integrin subunit β1 plays a critical role in the detection of geometric information. Overall, the integration of MTFM and single-cell micropatterning offers a robust approach for investigating the nexus between mechanical cues and cellular responses, holding potential for advancing our understanding of mechanobiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call