Abstract

Molecular dynamics simulations were used to analyze the mechanical properties and failure processes of poly(p-phenylene-terephthalamide) (PPTA), poly(p-phenylene-benzimidazole-terephthalamide) (PBIA), PBIA–PPTA (formed by 1:1 copolymerization of PPTA and PBIA), and poly(p-phenylene-benzobisoxazole) (PBO) crystals at different strain rates and temperatures. The failure stress and strain were found to be linear with the temperature and logarithmic strain rate. Moreover, based on the kinetic theory of fracture and the comprehensive simulation results, we formulated a model that describes the failure stress of the aforementioned crystals under varying strain rates and temperatures. Through the analysis of the failure process, we found that in PPTA, PBIA, and PBIA–PPTA crystals, the bond failure probability is correlated with the strain rate and temperature. The examination of bond lengths and angles unveiled that bonds with larger initial aligning angles are more susceptible to failure during the strain process. Intriguingly, the stretching process induced a conformational change in the PBO molecular chain, leading to a deviation from the linear relation in its stress–strain curve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.